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What	are	the	3-wave	equa.ons?	
What	is	a	resonant	triad?	

Let		               denote the elevation of the ocean’s surface, in the 
presence of three trains of dispersive waves. With 0 < ε << 1, 
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What	are	the	3-wave	equa.ons?	
What	is	a	resonant	triad?	

Let	                 denote the elevation of the ocean’s surface, in the presence 
of three trains of dispersive waves.  With 0 < ε <<1, 

	 	 	 		
 

The three wavetrains are resonant with each other if   
 
 

Then the three, complex-valued wave envelopes can exchange energy 
according to 
 

 
where      is jth group velocity, ζj is real-valued interaction coefficient, and  

  j,k,l = 1,2,3, cyclically. 
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Comments:	
– This model describes the simplest possible nonlinear interaction 
among dispersive wave trains. 
– The model admits no dissipation. 
–  These are “envelope equations”, like NLS.  
– These are not equivalent to the “3-wave equations” that Toan 
Nguyen discussed last Tuesday. 
– By suitable rescaling, the interaction coefficients {ζj} can be 
written as real-valued (as here) or as pure imaginary, or as {+1/-1}. 
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Which	physical	problems	admit	resonant	triads?	

•  Gravity-driven water waves, without surface tension? 
•  Capillary water waves, without gravity? 
•  Capillary-gravity waves? 
•  Internal waves in a stratified ocean? 
•  Electromagnetic waves in a dielectric medium? 
     – in a χ2 material? 
     – in a χ3 material? 
•  Laser pointers? 
 



Which	physical	problems	admit	resonant	triads?	

•  Gravity-driven water waves, without surface tension?  No 
•  Capillary water waves, without gravity?      No 
•  Capillary-gravity waves?          Yes 
•  Internal waves in a stratified ocean?       Yes 
•  Electromagnetic waves in a dielectric medium?    
     – in a χ2 material?            Yes 
     – in a χ3 material?            No 
•  Laser pointers?            Yes 
 
This question is answered by a simple test of the dispersion 
relation of the linearized problem. 



		   Proper.es	of	this	system	of	equa.ons	

 
– This model describes the simplest possible nonlinear interaction 
among dispersive wave trains. 

 

– The model admits no dissipation. 
 

–  These are “envelope equations”, like NLS.  
 

– They are not equivalent to the “3-wave equations” that Toan 
Nguyen discussed last Tuesday. 
 

– By suitable rescaling, the interaction coefficients {ζj} can be 
written as real-valued (as here), or as pure imaginary, or as {+1/-1}. 
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Mathema.cal	status	of	these	equa.ons			

	
(1)  If all three wavetrains have spatially uniform envelopes, then  

              and the 3 PDEs reduce to 3 complex ODEs:   
 
 
 
 

Bretherton (1964) found 3 conservation laws, and built the general 
solution of the equations explicitly in terms of elliptic functions.  
(2) Zakharov & Manakov (1973) found a Lax pair for the PDEs, then 
Zakharov & Manakov (1976) and Kaup (1976) solved the PDEs in 
unbounded 3-D space.  
(3) Nothing is known about the solution of the PDEs on a finite 
interval, with periodic or any other boundary conditions.     
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Our	objec.ve:	
Construct	the	general	solu.on	of	the	3-wave	PDEs			

Q:	What	does	“general	solu.on	of	a	PDE”	mean? 
•  The general solution of an Nth order system of ordinary differential 

equations is a set of functions (or a single function) that solve the 
ODE(s) and that admit exactly N free constants (which can be 
viewed as N constants of integration, or as N pieces of initial data). 

•  Proposal: Given a system of N partial differential equations that are 
evolutionary in time, we define its general solution to be a set of 
functions (or a single function) that solve the PDEs, and that admit 
N arbitrary functions that are independent of the PDEs, but might 
also be required to satisfy conditions external to the PDEs, like 
sufficient differentiability. 

 
 



Our	objec.ve:	
Construct	the	general	solu.on	of	the	3-wave	PDEs			

Q:	An	example	of	a	PDE	for	which	a	general	solu.on	is	
known?	
A:	D’Alembert’s	solu.on	of	the	wave	equa.on	in	1D:	
	
	

	f(•)	and	g(•)	must	be	twice-differen.able.	No	other	
	constraints.	

	

Q:	Might	the	3-wave	PDEs	provide	a	more	complicated	
example?	
 

	

u(x, t) = f (x − ct)+ g(x + ct).



Step	1:		Solve	the	3-wave	ODEs	
The 3-wave ODEs are three coupled, complex-valued ODEs of 
the form 

   
where each of the three interaction coefficients, ζj , is a specified 
real number.  These ODEs are equivalent to six real-valued 
ODEs, so any solution of the ODEs necessarily resides in a six-
dimensional phase space.    
     We show below that these coupled ODEs are Hamiltonian, so 
the general solution can be specified in terms of three sets of 
action-angle variables.      
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ODEs:	ac.on-angle	variables	
Not all ODEs admit action-angle variables, but those that do are 
necessarily completely integrable.  Action-angle variables have a 
nice geometric interpretation.  For the 3-wave ODEs, the solution 
necessarily resides on a three-dimensional manifold within a six-
dimensional phase space.  Each action variables is a constant of the 
motion, and these three constants define the three-dimensional 
manifold in question.  Then the three angle-variables define the 
trajectory of the solution on this manifold.  
From the ODEs, observe that 
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ODEs:	the	ac.on	variables	
Cross-multiply and add to obtain 
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ODEs:		the	ac.on	variables	
 

All three of   
 

are constants of the motion. 
 

–  If any two of  {ζ1, ζ2, ζ3} have different signs, then one of  
{K1, K2, K1– K2} guarantees that the solutions are bounded, for all 
time –this is the non-explosive case. 
 

– If all three of {ζ1, ζ2, ζ3} have the same sign, then none of  
{K1, K2, K1– K2} bounds the solutions, so all three wavetrains can  

blow up in finite time – this is the explosive case, the focus of today’s 
work.  
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ODEs:		the	ac.on	variables	
The third constant of the motion is  
 

   
Note that the complex conjugate of H is itself, so H is real-valued.  
H is also the Hamiltonian of the system with with 3 pairs of 
conjugate variables: 
 
 
The three action variables for this set of ODEs are algebraic 
combinations of  (K1, K2, H), so these three constants of the motion  
define the three-dimensional manifold on which the solution lives.  
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ODEs:	the	ac.on	variables	
In the explosive case, all of the interaction coefficients have the 
same sign (σ), so rescale {A1, A2, A3, t) according to 

	 	 		

  
 
 
Then the three constants of the motion become 
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ODEs:		the	angle	variables	
To find the corresponding angle variables, it is convenient to 
construct a formal Laurent series of the solution in the neighborhood 
of a pole of order 1: 
 
 
 
 
 
For each j, {ρj,        t0} are real-valued constants, with ρj > 0, while 
{αj, βj, γj, δj,…} are complex-valued constants. Insert this form into 
the ODEs and solve, order by order for the unknown coefficients. 

θ j,
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3
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5 +...].



ODEs:		the	angle	variables	
At leading order, the representative ODE becomes 
 
 
 
 
The ρj  are necessarily positive, so we need 

   
 

    

But there are no other constraints on the real numbers  
so we may choose any two of                    ,  
   

ρ1
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ODEs:	angle	variables	

		
	
	
	
In addition to two of                  , the last angle variable is  (t0).  
All of the angle variables are obtained at leading order. 
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ODEs:	higher	order	terms	in	series	
		
	
	
	
The higher order coefficients in the series are  {αj, βj, ….}.  These 
are obtained by solving coupled linear algebraic equations at each 
integer power of (t – t0).  Typically, these algebraic equations 
have non-homogeneous terms, coming from previously found 
coefficients in the series.  These forcing terms can be complex, so 
one actually needs to solve six coupled algebraic equations at 
each order. 
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ODEs:	singular	points	

		
	
	
 
Because each new order involves a higher power of (t – t0) the 
coefficient matrix changes in a predictable way.  For (α1, α2, α3)   
coefficient matrices are nonsingular, so (α1, α2, α3)  are determined 
uniquely, and they are all zero. 
For {βj}, one coefficient matrix is singular, so the real parts of any two 
of {β1, β2, β3}can be chosen at will.  One finds that the two free choices 
of {β1, β2, β3} are not determined by the ODEs directly, but they turn 
out to be algebraic combinations of the Manley-Rowe constants.   
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ODEs:	the	rest	of	the	series	

		
	
	
Similarly, the coefficient matrix for the real part of {γ1, γ2, γ3} is 
not singular, but the one for the imaginary parts of {γ1, γ2, γ3} is 
singular.  In this case, the imaginary parts of γj are proportional to 
the Hamiltonian, H.  
After (t – t0)3, there are no more singular coefficient matrices: 
every coefficients is uniquely determined, in terms of earlier 
terms in the series.  Convergence of the series is guaranteed 
because the solution is comprised of elliptic functions. 
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PDEs	(finally!)	
Consider next the PDE version of three-wave equations: 

 
 
Now spatial derivative is involved, so the analysis is more involved. 
First, we summarize the analysis of Martin & Segur (2015), then we 
consider the full problem. 
Recall that for the ODEs, the action-angle variables are {K1, K2, H},  

and                 . The basic hypothesis of this work is that one might 
be able to replace each of the six arbitrary constants in the solution 
of the ODEs with six arbitrary functions of x, and obtain in this way 
a large family of solutions of the PDEs.  
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PDEs	(finally!)	
Consider next the PDE version of three-wave equations: 

 
 
The role played by to is more fundamental than that of the other 
variables, so M&S (2016) replaced five of the six free constants in 
the solution of ODEs with five free functions, allowing to to remain 
a constant.  The short summary of that work is that everything 
works, mostly as it does for the ODEs. The new free functions of x 
must be infinitely differentiable, because they get differentiated over 
and over as one goes to higher and higher terms in the Laurent 
series. And higher derivatives must be bounded in terms of lower 
derivatives.   
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PDEs	(finally!)	
Consider next the PDE version of three-wave equations: 

 
 
M & S (2016) required that for each free function, f(x), there must be 
a finite, positive number, k, such that  higher derivatives satisfy 

     
 
 
With this constraint, they proved convergence of the Laurent series, 
with radii of convergence that were only nominally smaller than the 
distance to the next pole. 
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PDEs	(finally!)	
 
 
The final stage of work on this problem involves replacing the last 
free parameter, t0 , with a free function of x, in order to obtain the 
full “general solution” of the PDEs, with six arbitrary functions of x, 
subject only to mild constraints.  The results obtained so far have 
been obtained at ICERM, during the semester-long program that is 
now coming to an end.  The results so far are promising, but it would 
be premature to forecast the final outcome at this time.   
 

If everything works, then this set of PDEs will join the linear wave 
equation in one dimension as one of the very few PDEs for which a 
general solution is available.  
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							Thank you for your attention.	


